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LoGICc SYSTEMS

The Modal Hilbert System (H,>)

We use the usual substrate with a normality axiom (but this latter
is not essential):

C: the axioms of classical propositional logic;

N: the axiom [h](A — B) — ([h]| A — [»] B),h € H,
In addition, we add the following simple axiom:
Al: [K|A— [n] Afork>hand k,h € H.

and the rules

Ael .., THA THASB,,  FA
F[n A

gen
A =B

and (h) A can be defined as =[] 2 A.
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The Modal Hilbert System S4 with (H,>)

To axiomitize S4, one adds the usual axioms:

A2 [n] A — A.

A3 [ A~ W] 1] A.

Axioms Al and A3 may be replaced with:

A3 [k] A — [r] [k] A, k > h.

The axiom Al is the axiom that codes the partial order, it may
also be expressed using possibility as:

A1’ (k) A — (h) A for k < h.
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The Modal Hilbert System S4 with (H,>), Continued

There are two derived rules for the Hilbert-system when proofs are
allowed to have assumptions, the usual deduction theorem and an
extension of gen.

Theorem 1 (Gen). The classical deduction theorem continues to
hold and an expanded gen rule is a derived rule of the Hilbert-style
system:

[k1] By, ..., [*kn] By, F A implies
[kl] Bl7 SRR [k"] Bn H [h] Aa k“’L > h.
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LoGICc SYSTEMS

The Modal Gentzen System S4 with (H,>)

The usual Gentzen rules for propositional logic;

The active formulais the formula newly introduced.

The modal class of a formula is either necessary, possible, or
neutral.

The Modal Condition

all formulae on the same side of the I~ as the active formula
must have the opposite modal class as the active formula,

all formulae on the opposite side of the I as the active formula
must have the same modal class as the active formula.
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The Modal Gentzen System S4 with (H,>), Continued

e Partially Ordered Modal Condition (NC)

MC andVC e TUA.c(C) > h

where ¢(C) is the “closure” value of a formula using the
modal partial order.

TAFA NC T'+A,B
nmara  MF rrams W
IAF A
reAdNe , -

TFA 1A T, WA A

= o7
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The Modal Gentzen System S4 with (H,>), Cut
Elimination

Theorem 2 (Cut Elimination). The cut rule can be eliminated

from the Gentzen system.
Theorem 3 (Presentation Equivalence). The Hilbert system

and the Gentzen system present the same logic.
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MODELS

Kripke Frames

* (X, (R, 2)):

e X is a collection of points (worlds, states, etc.);
e (R,>) is a partial order of binary relations;
e R; C Ry is presented as k > h.

e Monotonicity: Rpry and k > h implies Rizy.
In addition, for S4, the following axioms are added
o Reflexivity: Rpzax
e Transitivity: Rpzx and Rpxy implies Ry zy.
One can also take, in place of Monotonicity and Transitivity:

e Transitivity + Monotonicity: for k > h,
Riyz and Rpzy implies Ryzz.
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Valuations and Soundness

The modalities are evaluated using the usual prescription from
modal logic:

x = (h) P iff 3y.Rpzy and y = P
x = [h] P iff Vy.Rpxy implies y = P.
It follows easily that: [r]| =P = = () P.

Theorem 4 (Soundness). Partially-ordered modal logic is sound
with respect to the partially ordered models.
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Canonical Representations and Competeness

Definition 5 (Canonical Frame). Let (A, H) be a modal
algebra (Boolean lattice with partially ordered normal modalities),

e Worlds are maximal filters;

e Rpzy iff [h]a € x implies a € y;

e [k]a <[] a implies Ry, C Ry.
Definition 6 (Canonical Representation). For A a set of
maximal filters of the modal algebra,

W] A= {z | Vy.Rpxy implies y € A}
() A={z | Jy.Rpzyandy € A}

Theorem 7 (Completeness). Partially-ordered modal logic is
complete with respect to the partially ordered models.
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MODELS

General Frames

A general frame is a structure X = (X, R, A) :

e (X,R) is a Kripke frame
e A is a collection of admissiblesubsets of X

e A is closed under the Boolean operations and under the
operation (R) : P(X) — P(X) given by:

(RYC ! {y € X | Ry for some z € X}.

General frames are defined in monadic second-order logic.
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MODELS

General Frames Continued

A general frame (X, (R, >), X.) a Kripke frame and X, is closed
under derived modal operators using the prescriptions for [r] A and
(ny A1

o differentiated if for all x,y € X with x # y, there is a
‘witness' a € X, such that z € ¢ and y € q;

e tight if whenever y is not an Rj,-successor (for R, € R) of x,
there a ‘witness’ a such that y € a and x & (R») a;

e compact if for every C' C X, if C' has the finite intersection
property, then (C # 0.

A general frame is descriptive if it is differentiated, tight, and
compact.

!Following “Stone Coalgebras” by Kupke, Kurz, and Venema (and Goldblatt
originally)
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MODELS

General Frames Continued

e X, is the clopen basis for the Stone topology on the Kripke
frame.

e The identity modal operator [1x] corresponds to the identity

relation on X, and [1x] C' = (1x) C for all elements of X, (or
propositions) C.

All partial orders of relations can be extended with this relation
with little effect on the dual algebras.

Lemma 8 (Clopen Sets). For all C, [1x]C = C = (1x) C.
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MODELS

p-morphisms
The coalgebra for Kripke relation R in X = (X, (R, >)) is defined
with:

Rz ={y | Rpry}
(where the symbol Ry, is overloaded).

(forgetting the partial order for the moment) p is a p-morphism
when the square commutes:

X—2 oy
RhJ pRy
P(X P(Y

(X) ——P(¥)

e Ryxy implies (pRy)(p)(py);
e (pRp)(px)y implies there is some z such that Rpzz and
pz=1y.
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MODELS

General Frame Morphisms

Denote the category of all coalgebras on X with Coalg(X):

o Partially order the relations which partially orders the relations
as coalgebra morphisms.

e Coalg(X) then forms a simple category.

e A morphism of frames p : X — Y then can be expected to be
p-morphism for all the relations of X with the additional
constraint that it also be a morphism
p : Coalg(X) — Coalg(Y).

e A morphismp: X =(X,(R,>),X,) =Y =(Y,(S,>),Ys) is
a general frame morphism if

e it is a morphism for partially ordered frames, and
e p~1:Y, = X, is a modal homomorphism.
o General frame morphisms are also descriptive frame morphisms.
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CHANNEL THEORY

Channel Theory

e Objects are classifications: X

e Types: Typ(X)
o Tokens: Tok(X)
e Satisfaction: x |=x P for z a token and P a type.

e Infomorphisms: f: X - Y
f
Typ(X) —— Typ(Y)

Ex Fy
Tok(X) «——— Tok(Y)
f

satisfying

frlex Piff f =y fP
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CHANNEL THEORY

Theory in a Classification

e Gentzen sequents of types: I' IFx A
e I" conjunctive, A disjunctive
e Classical rules

o Reflexivity
PlFx P
e Thinning
Tlkx A
DTV iEx AA

e Global Cut: for any © C Typ(X),

[, % IFx Xo, A all partitions (31, ¥5) of ©
TlFx A

e Given f: X — Y, f preserves validity and reflects
non-validity,

'kEx A I Iky AT
—=——(f—Intro —— (f—FEli
NN (f ) Tl v 2 (f—Elim)
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CHANNEL THEORY

Theory in the Channel

e All the classical rules

e Connection sequents of the form
P! ke AP?

for '’ AP2 the forward images of I and A along p; and po.

This can be used to underwrite information flow:

zEp Tiff mi{x,y) Ep T assumption
iff (x,y) Ec T™ infomorphism condition
implies (z,y) F=c AP? channel constraint
iff mo(z,y) Ep A infomophism condition

iff y =p A assumption
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CHANNEL THEORY

Simulation via a Channel

Proximal A’ I [r] B’ transforms to distal A I+ [»] B;

Note the two languages at Proximal and Distal are different.

The connections in the channel are a simulation relation.

The connection theory in C relates non-modal proximal and
distal types:

e The connection theory in C relates non-modal proximal and
distal types.

e The projection 7y is surjective, i.e., must cover Tok(D).

e P simulates D via the channel tokens Tok(C).

Theorem 9 (Simulation). For channel C, if P simulates D,
plA H_C pgA/, and pr, H_C plB.'

(A’ IFp [7] B’) implies (A Fp [#] B).
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The Partial Order of Possibilistic Security Properties

Generalized
Noninference

— T

Generalized Noninference
Noninterference /
Separability
Nothing
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SECURITY

Possibilistic Security Properties

Two security domains, High and Low, both with Inputs and
Outputs:

e Separability: given a particular trace of high's behavior, any
trace of low’s behavior is possible, and vice versa.

e Generalized Noninterference: any high-level trace is
co-possible with any low-level trace, and when only high-level
input is considered any low-level trace is co-possible with any
high-level trace.

¢ Noninference “purges” high information from the input and
output traces by overwriting that information.

e Generalized Noninference: only high input is purged.
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SECURITY

Possibilistic Security Properties, Continued

Each property can be described as a system’s behavior being
closed under a particular kind of interleaving functions.

Closure under a collection of functions can be considered
closure in a topological space.

Closures can be apprehended using S4 modalities.
These modalities must be partially ordered.

The diagram looks like a lattice but it is not; those are not
joins and meets but merely upper and lower bounds.
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CURRENT WORK

Current Work

e The entire relational algebra will yield joins and meets.

e The partial order is used to pick out the coalgebras that are
relevant to a particular application.

e One could outfit the relations with a Directed, Complete
Partial Order structure (DCPO) and use notions of
computation.
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CURRENT WORK

Current Work, Continued

e The algebra of coalgebras uses Composition, Converses, and
the Identity relation.

e These can be used to specify

Modal  Relation Modal Kleisli
System Condition  Axiom condition

D serial OA— QA I<a*oa’l
T reflexive OA— A I <«

B symmetric A—>0O0A a<al

T4 transitive OA—-O0OA4 a*oa<a«a
T5 Euclidian (0A—-00A a‘oa'<a

e Now we can make morphisms respect these conditions so
that, say, S4 relations are taken to S4 relations.
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CURRENT WORK

Current Work, Continued

Not all conditions we'd like to preserve are first-order logic
conditions, some are monadic second-order, i.e., well-founded
relations, induction (for action logic), etc.

What kind of categorical structure must we have to specify
these?

Categorical sketches with formal 2-cells is necessary for the
algebra of coalgebras.

We need to incorporate the functor so we are specifying an
algebra of coalgebras and not any old algebra.
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