Partially-ordered Modalities

Gerard Allwein and William S. Harrison

24 August 2010

Introduction

- Logic Systems
 - Hilbert
 - Gentzen
- Models
 - Frames
 - General Frames
 - Morphisms
- Channel Theory
 - Basic Channel Theory
 - Simulations
- Security
- Current Work

The Modal Hilbert System (H, \geq)

We use the usual substrate with a normality axiom (but this latter is not essential):

C: the axioms of classical propositional logic;

N: the axiom $[h](A \to B) \to ([h] A \to [h] B), h \in H$,

In addition, we add the following simple axiom:

A1:
$$[k] A \rightarrow [h] A$$
 for $k \ge h$ and $k, h \in H$.
and the rules

$$\frac{A \in \Gamma}{\Gamma \vdash A} \ rep \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash A \to B}{\Gamma \vdash B} \ mp \qquad \frac{\vdash A}{\vdash [h] A} \ gen$$

and $\langle h \rangle A$ can be defined as $\neg [h] \neg A$.

The Modal Hilbert System **S4** with (H, \geq)

To axiomitize $\mathbf{S4}$, one adds the usual axioms:

- $A\mathscr{2} \ [h] A \to A.$
- $A\mathcal{3}\ [h]\ A \to [h]\ [h]\ A.$

Axioms A1 and A3 may be replaced with:

$$A3' [k] A \to [h] [k] A, \ k \ge h.$$

The axiom A1 is the axiom that codes the partial order, it may also be expressed using possibility as:

 $A1' \langle k \rangle A \rightarrow \langle h \rangle A$ for $k \leq h$.

The Modal Hilbert System **S4** with (H, \geq) , Continued

There are two derived rules for the Hilbert-system when proofs are allowed to have assumptions, the usual deduction theorem and an extension of gen.

Theorem 1 (Gen). The classical deduction theorem continues to hold and an expanded gen rule is a derived rule of the Hilbert-style system:

$$[k_1] B_1, \dots, [k_n] B_n \vdash A \text{ implies} [k_1] B_1, \dots, [k_n] B_n \vdash [h] A, \ k_i \ge h.$$

The Modal Gentzen System S4 with (H, \geq)

- The usual Gentzen rules for propositional logic;
- The active formulais the formula newly introduced.
- The *modal class* of a formula is either necessary, possible, or neutral.
- The Modal Condition
 - all formulae on the same side of the ⊢ as the active formula must have the opposite modal class as the active formula,
 - all formulae on the opposite side of the ⊢ as the active formula must have the same modal class as the active formula.

The Modal Gentzen System S4 with (H, \geq) , Continued

• Partially Ordered Modal Condition (NC)

MC and $\forall C \in \Gamma \cup \Delta.c(C) \geq h$

where c(C) is the "closure" value of a formula using the modal partial order.

$$\begin{array}{ll} \displaystyle \frac{\Gamma, A \vdash \Delta & NC}{\Gamma, \langle h \rangle A \vdash \Delta} & \langle h \rangle \vdash & \qquad \displaystyle \frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, \langle h \rangle B} \vdash \langle h \rangle \\ \\ \displaystyle \frac{\Gamma \vdash \Delta, A & NC}{\Gamma \vdash \Delta, [h] A} \vdash [h] & \qquad \displaystyle \frac{\Gamma, A \vdash \Delta}{\Gamma, [h] A \vdash \Delta} & [h] \vdash \end{array}$$

The Modal Gentzen System **S4** with (H, \geq) , Cut Elimination

Theorem 2 (Cut Elimination). The cut rule can be eliminated from the Gentzen system. Theorem 3 (Presentation Equivalence). The Hilbert system and the Gentzen system present the same logic.

Kripke Frames

- $(X, (\mathcal{R}, \geq))$:
 - X is a collection of points (worlds, states, etc.);
 - (\mathcal{R}, \geq) is a partial order of binary relations;
 - $R_h \subseteq R_k$ is presented as $k \ge h$.
- Monotonicity: $R_h xy$ and $k \ge h$ implies $R_k xy$.

In addition, for ${\bf S4},$ the following axioms are added

- Reflexivity: $R_h x x$
- Transitivity: $R_h zx$ and $R_h xy$ implies $R_h zy$.

One can also take, in place of Monotonicity and Transitivity:

• Transitivity + Monotonicity: for $k \ge h$, $R_k yz$ and $R_h xy$ implies $R_k xz$.

Valuations and Soundness

The modalities are evaluated using the usual prescription from modal logic:

$$x \models \langle h \rangle P \text{ iff } \exists y.R_h xy \text{ and } y \models P$$
$$x \models [h] P \text{ iff } \forall y.R_h xy \text{ implies } y \models P.$$

It follows easily that: $[h] \neg P = \neg \langle h \rangle P$.

Theorem 4 (Soundness). Partially-ordered modal logic is sound with respect to the partially ordered models.

Canonical Representations and Competeness

Definition 5 (Canonical Frame). Let (A, H) be a modal algebra (Boolean lattice with partially ordered normal modalities),

- Worlds are maximal filters;
- $R_h xy$ iff $[h] a \in x$ implies $a \in y$;
- $[k] a \leq [h] a$ implies $R_h \subseteq R_k$.

Definition 6 (Canonical Representation). For A a set of maximal filters of the modal algebra,

$$[h] A = \{x \mid \forall y. R_h xy \text{ implies } y \in A\}$$
$$\langle h \rangle A = \{x \mid \exists y. R_h xy \text{ and } y \in A\}$$

Theorem 7 (Completeness). Partially-ordered modal logic is complete with respect to the partially ordered models.

- A general frame is a structure $\mathbb{X}=(X,R,A)$:
 - (X, R) is a Kripke frame
 - A is a collection of *admissible*subsets of X
 - A is closed under the Boolean operations and under the operation $\langle R \rangle : \mathcal{P}(X) \to \mathcal{P}(X)$ given by:

$$\langle R \rangle C \stackrel{\text{\tiny def}}{=} \{ y \in X \mid Ryx \text{ for some } x \in X \}.$$

General frames are defined in monadic second-order logic.

General Frames Continued

A general frame $(X, (\mathcal{R}, \geq), X_*)$ a Kripke frame and X_* is closed under derived modal operators using the prescriptions for [h] A and $\langle h \rangle A :^1$

- differentiated if for all $x, y \in X$ with $x \neq y$, there is a 'witness' $a \in X_*$ such that $x \in a$ and $y \notin a$;
- *tight* if whenever y is not an R_h -successor (for $R_h \in \mathcal{R}$) of x, there a 'witness' a such that $y \in a$ and $x \notin \langle R_h \rangle a$;
- compact if for every $C \subseteq X_*$, if C has the finite intersection property, then $\bigcap C \neq \emptyset$.

A general frame is *descriptive* if it is differentiated, tight, and compact.

¹Following "Stone Coalgebras" by Kupke, Kurz, and Venema (and Goldblatt originally)

General Frames Continued

- X_* is the clopen basis for the Stone topology on the Kripke frame.
- The identity modal operator $[1_X]$ corresponds to the identity relation on X, and $[1_X] C = \langle 1_X \rangle C$ for all elements of X_* (or propositions) C.

All partial orders of relations can be extended with this relation with little effect on the dual algebras.

Lemma 8 (Clopen Sets). For all C, $[1_X] C = C = \langle 1_X \rangle C$.

p-morphisms

The coalgebra for Kripke relation R in $\mathbb{X}=(X,(\mathcal{R},\geq))$ is defined with:

$$R_h x = \{ y \mid R_h x y \}$$

(where the symbol R_h is overloaded).

(forgetting the partial order for the moment) p is a p-morphism when the square commutes:

- $R_h xy$ implies $(pR_h)(px)(py)$;
- $(pR_h)(px)y$ implies there is some z such that R_hxz and pz = y.

General Frame Morphisms

Denote the category of all coalgebras on $\mathbb X$ with $\mathsf{Coalg}(\mathbb X)$:

- Partially order the relations which partially orders the relations as coalgebra morphisms.
- $\mathsf{Coalg}(\mathbb{X})$ then forms a simple category.
- A morphism of frames $p: \mathbb{X} \to \mathbb{Y}$ then can be expected to be p-morphism for all the relations of \mathbb{X} with the additional constraint that it also be a morphism

 $p:\mathsf{Coalg}(\mathbb{X})\to\mathsf{Coalg}(\mathbb{Y}).$

- A morphism $p: \mathbb{X} = (X, (\mathcal{R}, \geq), X_*) \to \mathbb{Y} = (Y, (\mathcal{S}, \geq), Y_*)$ is a general frame morphism if
 - it is a morphism for partially ordered frames, and
 - $p^{-1}: Y_* \to X_*$ is a modal homomorphism.
 - General frame morphisms are also descriptive frame morphisms.

Current Work

Channel Theory

- Objects are classifications: $oldsymbol{X}$
 - Types: Typ(X)
 - Tokens: $\mathit{Tok}(X)$
 - Satisfaction: $x \models_X P$ for x a token and P a type.
- Infomorphisms: $f: \boldsymbol{X}
 ightarrow \boldsymbol{Y}$

$$Typ(\mathbf{X}) \xrightarrow{\hat{f}} Typ(\mathbf{Y})$$
$$=_{\mathbf{X}} | \qquad | \models_{\mathbf{Y}}$$
$$Tok(\mathbf{X}) \xleftarrow{f} Tok(\mathbf{Y})$$

satisfying

$$\check{f}x\models_{\boldsymbol{X}} P \text{ iff } f\models_{\boldsymbol{Y}} \hat{f}P$$

Theory in a Classification

- Gentzen sequents of types: $\Gamma \Vdash_X \Delta$
- Γ conjunctive, Δ disjunctive
- Classical rules
 - Reflexivity

$$P \Vdash_{\boldsymbol{X}} P$$

• Thinning

$$\frac{\Gamma \Vdash_{\boldsymbol{X}} \Delta}{\Gamma, \Gamma' \Vdash_{\boldsymbol{X}} \Delta, \Delta'}$$

• Global Cut: for any
$$\Theta \subseteq Typ(X)$$
,
 $\Gamma, \Sigma_1 \Vdash_X \Sigma_2, \Delta$ all partitions $\langle \Sigma_1, \Sigma_2 \rangle$ of Θ

$$\Gamma \Vdash_{\pmb{X}} \Delta$$

- Given $f: \mathbf{X} \to \mathbf{Y}$, f preserves validity and reflects non-validity,

$$\frac{\Gamma \Vdash_{\boldsymbol{X}} \Delta}{\Gamma^f \Vdash_{\boldsymbol{Y}} \Delta^f} (f - Intro) \qquad \quad \frac{\Gamma^f \Vdash_{\boldsymbol{Y}} \Delta^f}{\Gamma \Vdash_{\boldsymbol{X}} \Delta} (f - Elim)$$

Theory in the Channel

- All the classical rules
- Connection sequents of the form

$$\Gamma^{\rho_1} \Vdash_{C} \Delta^{\rho_2}$$

for $\Gamma^{\rho_1}, \Delta^{\rho_2}$ the forward images of Γ and Δ along ρ_1 and ρ_2 .

This can be used to underwrite information flow:

$$\begin{array}{ll} x \models_{\mathbf{D}} \Gamma \text{ iff } \pi_1 \langle x, y \rangle \models_{\mathbf{D}} \Gamma & \text{assumption} \\ & \text{iff } \langle x, y \rangle \models_{\mathbf{C}} \Gamma^{\rho_1} & \text{infomorphism condition} \\ & \text{implies } \langle x, y \rangle \models_{\mathbf{C}} \Delta^{\rho_2} & \text{channel constraint} \\ & \text{iff } \pi_2 \langle x, y \rangle \models_{\mathbf{P}} \Delta & \text{infomophism condition} \\ & \text{iff } y \models_{\mathbf{P}} \Delta & \text{assumption} \end{array}$$

Simulation via a Channel

- Proximal $A' \Vdash [h] B'$ transforms to distal $A \Vdash [h] B$;
- Note the two languages at Proximal and Distal are different.
- The connections in the channel are a simulation relation.
- The connection theory in C relates non-modal proximal and distal types:
 - The connection theory in C relates non-modal proximal and distal types.
 - The projection π_1 is surjective, i.e., must cover $Tok(\mathbf{D})$.
 - **P** simulates **D** via the channel tokens $Tok(\mathbf{C})$.

Theorem 9 (Simulation). For channel C, if P simulates D, $\rho_1 A \Vdash_{\mathbf{C}} \rho_2 A'$, and $\rho_2 B' \Vdash_{\mathbf{C}} \rho_1 B$:

$$(A' \Vdash_{\mathbf{P}} [h'] B')$$
 implies $(A \Vdash_{\mathbf{D}} [h] B)$.

The Partial Order of Possibilistic Security Properties

Possibilistic Security Properties

Two security domains, High and Low, both with Inputs and Outputs:

- Separability: given a particular trace of high's behavior, any trace of low's behavior is possible, and vice versa.
- Generalized Noninterference: any high-level trace is co-possible with any low-level trace, and *when only high-level input is considered* any low-level trace is co-possible with any high-level trace.
- Noninference "purges" high information from the input and output traces by overwriting that information.
- Generalized Noninference: only high input is purged.

Possibilistic Security Properties, Continued

- Each property can be described as a system's behavior being closed under a particular kind of interleaving functions.
- Closure under a collection of functions can be considered closure in a topological space.
- Closures can be apprehended using S4 modalities.
- These modalities must be partially ordered.
- The diagram looks like a lattice but it is not; those are not joins and meets but merely upper and lower bounds.

Current Work

- The entire relational algebra will yield joins and meets.
- The partial order is used to pick out the coalgebras that are relevant to a particular application.
- One could outfit the relations with a Directed, Complete Partial Order structure (DCPO) and use notions of computation.

Current Work, Continued

- The algebra of coalgebras uses Composition, Converses, and the Identity relation.
- These can be used to specify

Modal	Relation	Modal	Kleisli
System	Condition	Axiom	condition
D	serial	$\Box A \to \Diamond A$	$I \leq \alpha^* \circ \alpha^{-1}$
T	reflexive	$\Box A \to A$	$I \leq \alpha$
B	symmetric	$A \to \Box \Diamond A$	$\alpha \leq \alpha^{-1}$
T4	transitive	$\Box A \to \Box \Box A$	$\alpha^* \circ \alpha \leq \alpha$
T5	Euclidian	$\Diamond A \to \Box \Diamond A$	$\alpha^* \circ \alpha^{-1} \leq \alpha$

• Now we can make morphisms respect these conditions so that, say, S4 relations are taken to S4 relations.

Current Work, Continued

- Not all conditions we'd like to preserve are first-order logic conditions, some are monadic second-order, i.e., well-founded relations, induction (for action logic), etc.
- What kind of categorical structure must we have to specify these?
- Categorical sketches with formal 2-cells is necessary for the algebra of coalgebras.
- We need to incorporate the functor so we are specifying an algebra of coalgebras and not any old algebra.