
Cut-elimination and Proof Search for

Bi-Intuitionistic Tense Logic

Rajeev Goré, Alwen Tiu and Linda Postniece

Logic and Computation Group
School of Computer Science

The Australian National University
Canberra

August 25, 2010

1 / 23

Propositional Bi-Intuitionistic Logic (Rauszer)

Int: intuitionistic logic with ∧,∨,→,⊥

x A → B iff ∀y ≥ x .y A ⇒ y B (every successor)

DInt: dual intuitionistic logic with ∧,∨, −< ,⊤

x A −< B iff ∃y ≤ x .y A & y 6 B (some predecessor)

BiInt: Int and DInt plus axioms like A → (B ∨ (A −< B)) . . .

Adjunctions: (∧,→) and (∨, −<)
(A ∧ B) → C iff B → (A → C) iff A → (B → C)
A → (B ∨ C) iff (A −< B) → C iff (A −< C) → B

2 / 23

Propositional Classical Tense Logic Kt

Kf: classical modal logic with ∧,∨,→,⊥,�,♦

x �A iff ∀y .R(x , y) ⇒ y A (every successor)

x ♦A iff ∃y .R(x , y) & y A (some successor)

Kp: classical modal logic with ∧,∨,→,⊥,�,�

x �A iff ∀y .R(y , x) ⇒ y A (every predecessor)

x �A iff ∃y .R(y , x) & y A (some predecessor)

Kt: Kf plus Kp plus interactions axioms A → ��A and A → �♦p

Adjunctions: (�,�) and (♦,�)

�A → B iff A → �B

♦A → B iff A → �B

3 / 23

Propositional Bi-Intuitionistic Tense Logic

BiKt: bi-intuitionistic logic ∧,∨,→,⊥, −< ,⊤ with �,�,�,♦

x A → B iff ∀y ≥ x .y A ⇒ y B (every ≤-successor)
x A −< B iff ∃y ≤ x .y A & y 6 B (some ≤-predecessor)
x �A iff ∃y .R�(y , x) & y A (some R�-predecessor)
x �A iff ∀y .R�(x , y) ⇒ y A (every R�-successor)
x ♦A iff ∃y .R♦(x , y) & y A (some R♦-successor)
x �A iff ∀y .R♦(y , x) ⇒ y A (every R♦-predecessor)

Three binary relations: no explicit connections between R♦ and R�

Persistence: ∀v ≥ w . w ∈ V (p) ⇒ v ∈ V (p)

Reverse-Persistence: ∀v ≤ w . w 6∈ V (p) ⇒ v 6∈ V (p)

Frame Conditions:

F1♦ if x ≤ y & xR♦z then ∃w . yR♦w & z ≤ w

F2� if xR�y & y ≤ z then ∃w . x ≤ w & wR�z

4 / 23

Modular Proof Theory Suitable for Backward Proof Search

LBiKt: a display-like shallow nested sequent calculus

Cut-elimination: to transform LBiKt-derivations into cut-free ones

DBiKt: a nested sequent calculus using deep inference rules

Equiderivability: between cut-free LBiKt and (cut-free) DBiKt

Modularity: ability to restrict and extend base systems using rules
that capture particular axioms

Classical collapse: by the addition of structural rules

Proof Search: by restricting rules further ... termination still open

Soundness: wrt the Kripke semantics

Completeness: wrt the Kripke semantics (in extended version)

5 / 23

What’s Wrong With Gentzen’s Traditional Sequents?

Modal logics: works for some well-known logics

Γ ⊢ A
�R

�Γ ⊢ �A

Γ,�A,A ⊢ ∆
T

Γ,�A ⊢ ∆

Γ,�A,A ⊢ ∆
�4R

�Γ,�A ⊢ �∆

Tense logics: creates formulae not in original end-sequent

Γ ⊢ A
�R??

�∆,�Γ ⊢ �A

?
��∆,Γ ⊢ A

�R?
�∆,�Γ ⊢ �A

Need extra “machinery”: that extends Gentzen’s comma

6 / 23

Existing Proof-theoretic Methodologies

Display Calculi: extremely modular but bad for proof search

Nested Sequents: modular but display-like hence bad for proof
search

Labelled Sequents: explicitly represent Kripke semantics

Hyper-Sequents: no work on int tense logics to our knowledge

Our work: extension of nested sequents via deep inference

7 / 23

Formulae, Structures and Nested Sequents

Formulae:

A ::= p | ⊤ | ⊥ | A → A | A −< A | A∧A | A∨A | �A | ♦A | �A | �A

Structures:

X := ∅ | A | (X ,X) | X ⊲ X | ◦X | •X

Nested Sequent: is a structure of the form X ⊲ Y

Assume: Comma is associative and commutative with unit ∅

Intuition: think of sequents as formation trees

Related Work: generalises Kashima’s nested sequents, Brünnler’s
deep sequents, and Poggiolesi’s tree-hypersequents

8 / 23

Formula Translation of Nested Sequents

τ(X ⊲ Y) = τ−(X) → τ+(Y)

τ−(A) = A τ+(A) = A

τ−(X ,Y) = τ−(X) ∧ τ−(Y) τ+(X ,Y) = τ+(X) ∨ τ+(Y)
τ−(X ⊲ Y) = τ−(X) −< τ+(Y) τ+(X ⊲ Y) = τ−(X) → τ+(Y)
τ−(◦X) = ♦τ−(X) τ+(◦X) = �τ+(X)
τ−(•X) = �τ−(X) τ+(•X) = �τ+(X)

Gentzen toggles (different from display calculi)

comma: is ∧/∨ on left/right of sequent

◦: is interpreted as ♦/� on left/right of sequent

•: is interpreted as �/� on left/right of sequent

⊲: is interpreted as −< / → on left/right of sequent

9 / 23

Some Logical Rules of the Shallow System LBiKt

id
X ,A ⊲ A,Y

X ,A ⊲ B →R
X ⊲ A → B ,Y

X ⊲ A,Y X ,B ⊲ Y
−< R

X ⊲ A −< B ,Y

A ⊲ X
�L

�A ⊲ ◦X
X ⊲ •A

�R
X ⊲ �A

◦A ⊲ X
♦L

♦A ⊲ X
X ⊲ A

�R•X ⊲ �A

shallow: rules are only applicable at top level

modalities: must be displayed as whole of left/right hand side

structure: can be created or removed (backwards)

need: structural rules to bring formulae to top level

10 / 23

Some Structural Rules of the Shallow System LBiKt

X ,Y ,Y ⊲ Z
cL

X ,Y ⊲ Z

X ⊲ Z wL
X ,Y ⊲ Z

•X ⊲ Y rp◦
X ⊲ ◦Y

X1,X2 ⊲ Y2 ⊲R
X1 ⊲ (X2 ⊲ Y2)

(X1 ⊲ Y1),X2 ⊲ Y2 sL
X1,X2 ⊲ Y1,Y2

X1 ⊲ Y1,A A,X2 ⊲ Y2
cut

X1,X2 ⊲ Y1,Y2

rp◦: allows us to move modalities aside

sL and ⊲R : allow us to unravel bi-intuitionistic parts

cut: applied only on formulae at top level

Backward proof search: cut, weakening and contraction are bad

Need: to compile the structural rules into the logical rules

11 / 23

Example of Shallow Derivation

X ,A ⊲ B →R
X ⊲ A → B ,Y

X ⊲ ◦A
�R

X ⊲ �A
X ⊲ A

�R•X ⊲ �A

•X ⊲ Y rp◦
X ⊲ ◦Y

id
A ⊲ A

�R•A ⊲ �A rp◦
A ⊲ ◦�A

�R
A ⊲ ��A →R

∅ ⊲ A → ��A

Shallow

→r displays A

�r rewrites displayed �A

rp◦ displays �A

12 / 23

Cut-elimination for Shallow Inference

Theorem: If X ⊲ Y is LBiKt-derivable then it is also
LBiKt-derivable without using cut.

Ψ1

X ′

1 ⊲ A
♦R

◦(X ′

1) ⊲ ♦A

...
X1 ⊲ Y1, ♦A

Ψ2

◦A ⊲ Y ′

2
♦L

♦A ⊲ Y ′

2

...
♦A, X2 ⊲ Y2

◦X ′

1 ⊲ (X2 ⊲ Y2)

...
X1 ⊲ Y1, (X2 ⊲ Y2)

sR
X1, X2 ⊲ Y1, Y2

Ψ1

X ′

1 ⊲ A

Ψ2

◦A ⊲ Y ′

2 rp•
A ⊲ •Y ′

2
cut

X ′

1 ⊲ •Y ′

2 rp•
◦X ′

1 ⊲ Y ′

2

...

◦X ′

1, X2 ⊲ Y2 ⊲R

◦X ′

1 ⊲ (X2 ⊲ Y2)

(1) (2) (3) (4)

13 / 23

Nested Sequent System DBiKt Using Deep Inference

Proof search: LBiKt is bad for backward proof search

Context Σ[] is a structure with a hole or a placeholder []

Filling: hole with structure X gives Σ[X]

Simple context: hole is not under the scope of ⊲

Negative context: Σ−[] when hole appears to the left of the closest
ancestor node labelled with ⊲

Positive context: Σ+[] when hole appears to the right of the
closest ancestor node labelled with ⊲

Note: different from traditional notion of polarity in display calculi
which is relative to the top-most “turnstile”

Beware: our deep inference is not Guglielmi’s Deep Inference!

14 / 23

Structural (Propagation) Rules in DBiKt

Σ−[A, (A, X ⊲ Y)]
⊲L1

Σ−[A, X ⊲ Y]

Σ+[(X ⊲ Y , A), A]
⊲R1

Σ+[X ⊲ Y , A]

Σ[(X ⊲ Y , A), W ⊲ A, Z]
⊲R2

Σ[(X ⊲ Y), W ⊲ A, Z]

Σ−[A, •(�A, X)]
�L1

Σ−[•(�A, X)]

Σ+[A, ◦(�A, X)]
�R1

Σ+[◦(�A, X)]

Σ[�A, X ⊲ •(A ⊲ Y), Z]
�L2

Σ[�A, X ⊲ •Y , Z]

rules are polarity dependent : positive, negative or simple contexts

contraction: built into most rules i.e. premises contain conclusions

propagation: of formulae when read backwards

create structure: when read backwards

proof search: must tame the application of these rules

15 / 23

Example of Shallow and Deep Derivations

id
A ⊲ A

�R•A ⊲ �A rp◦
A ⊲ ◦�A

�R
A ⊲ ��A →R

∅ ⊲ A → ��A

id
∅ ⊲ (A ⊲ A, ◦(�A))

�R1
∅ ⊲ (A ⊲ ◦(�A))

�R
∅ ⊲ (A ⊲ ��A)

→R

∅ ⊲ A → ��A

Shallow Deep

→r displays A →r nests A

�r rewrites displayed �A �r rewrites nested �A

rp◦ displays �A �R1
deeply propagates A

16 / 23

Equi-derivability between LBiKt and DBiKt

Right to left:

Theorem 4.1: every rule of DBiKt is derivable in LBiKt

Left to right: many technical proof-theoretic lemmas

Lemmas 4.2-4.6: LBiKt structural rules are DBiKt-admissible
(if premisses derivable then so is conclusion)

Logical: LBiKt rules mimicked (shallowly) in DBiKt

(deep rules can always be applied shallowly)

17 / 23

Modularity of DBiKt for its fragments

Purely modal nested sequent contains no occurrences of • nor its
formula translates � and �

DInt: sub-system of DBiKt containing id , logical rules for
intuitionistic connectives, and propagation rules for ⊲

DIntK: is DInt plus the deep introduction rules for � and ♦, and
the propagation rules �L2 and ♦R2

DBInt: is DInt plus the deep introduction rules for −<

Modularity: for an Int/BiInt/IntK formula A, the sequent ∅ ⊲ A is
DInt/DBInt/DIntK-derivable iff ∅ ⊲ A is DBiKt-derivable

Proof: the only rules that create • upwards are �L and �R . Thus
in every DBiKt-derivation π of an IntK formula, the internal
sequents in π are purely modal, so π is also a DIntK-derivation

18 / 23

Syntactic Extensions

Ewald: (♦A → �B) → �(A → B) (�A → �B) → �(A → B)

X ⊲ •Y ⊲ •Z •⊲R
X ⊲ •(Y ⊲ Z)

X ⊲ ◦Y ⊲ ◦Z ◦⊲R
X ⊲ ◦(Y ⊲ Z)

Axiomatic Extensions

Σ−[A, �A]
T�

Σ−[�A]

Σ[�A, X ⊲ ◦(�A ⊲ Y), Z]
4�L

Σ[�A, X ⊲ ◦Y , Z]

Σ−[A, ◦(�A, X)]
B�L

Σ−[◦(�A, X)]

id
p, �p ⊲ p

T�
�p ⊲ p

→R

⊲ �p → p

id
�p ⊲ ◦(�p ⊲ �p)

4�L
�p ⊲ ◦�p

�R
�p ⊲ ��p

→R

⊲ �p → ��p

id
p, ◦�p ⊲ p

B�L◦�p ⊲ p
♦L

♦�p ⊲ p
→R

⊲ ♦�p → p

Note: do not correspond to reflexivity, transitivity, symmetry of R�

19 / 23

Classical Collapse Via Structural Rules

X1,X2 ⊲ Y1,Y2
s−1
L(X1 ⊲ Y1),X2 ⊲ Y2

X1,X2 ⊲ Y1,Y2
s−1
RX1 ⊲ Y1, (X2 ⊲ Y2)

The law of the excluded middle and the law of (dual-)contradiction
can then be derived as shown below:

p ⊲ p,⊥
s−1
L(∅ ⊲ p), p ⊲ ⊥
→R

(∅ ⊲ p) ⊲ (p → ⊥)
sL

∅ ⊲ p, (p → ⊥)
∨L

∅ ⊲ p ∨ (p → ⊥)

p,⊤ ⊲ p
s−1
R⊤ ⊲ p, (p ⊲ ∅)

−< L
(⊤ −< p) ⊲ (p ⊲ ∅)

sR
p, (⊤ −< p) ⊲ ∅

∧R
p ∧ (⊤ −< p) ⊲ ∅

20 / 23

Proof Search Using the Deep System

Backward proof search strategy: proceeds in three stages:
saturation, propagation and realisation

Saturation phase: applies (backwards) the “static rules” (i.e. those
that do not create extra structural connectives) until further
backward application do not lead to any progress

Propagation phase: propagates formulaes across different
structural connectives

Realisation phase: applies the “dynamic rules” (i.e., those that
create new structural connectives, e.g., →R)

Caveat: we do not yet have termination or completeness

21 / 23

Further Work

Termination: of our proof search procedure

Expressivity: what class of axiomatic extensions can we capture

Implementation: extend our previous prover for BiInt to BiKt

22 / 23

Rauszer’s Axioms for BiInt

(A → B) → ((B → C) → (A → C)) (1)

A → A ∨ B (2)

B → A ∨ B (3)

(A → C) → ((B → C) → ((A ∨ B) → C)) (4)

(A ∧ B) → A (5)

(A ∧ B) → B (6)

(C → A) → ((C → B) → (C → (A ∧ B))) (7)

(A → (B → C)) → ((A ∧ B) → C) (8)

((A ∧ B) → C) → (A → (B → C)) (9)

A → (B ∨ (A −< B)) (10)

(A → B) → (¬B → ¬A) (11)

(A −< B) →∼ (A → B) (12)

((A −< B) −< C) → (A −< (B ∨ C)) (13)

¬(A −< B) → (A → B) (14)

(A → (B −< B)) → ¬A (15)

¬A → (A → (B −< B)) (16)

((B → B) −< A) →∼ A (17)

∼ A → ((B → B) −< A) (18)

MP plus From A infer ¬ ∼ A

23 / 23

