Goldblatt-Thomason-style Theorems for Graded Modal Language

Katsuhiko Sano1 Minghui Ma2

1Kyoto University (JSPS), Japan
katsuhiko.sano@gmail.com

2Tsinghua University, China
ILLC, Universiteit van Amsterdam
mmh.thu@gmail.com

AiML 2010 @ Moscow, Russia
26th August, 2010
Confucius (BC551-BC479)
If you read a classic well in your own context, then you can obtain something new.

A classic of this talk:
- Fine, K.
 ‘In so many possible worlds’,

Our context: Semantical Characterization of Frame Definablity of GML

Something new: GbTh Theorem for GML
1. Introduction
 - GbTh Theorem for Basic ML
 - Kripke Semantics for GML

2. Neighborhood Semantical View to GML
 - \(g\)-bounded morphic images
 - Relative GbTh Theorem for GML

3. Graph Semantical View to GML
 - Graded ultrafilter images
 - GbTh Theorem for GML
GbTh Theorem for Basic ML

Let F be a first-order definable class of frames. TFAE:

(A) F is modally definable.

(B) F is closed under taking

(i) generated subframes,

(ii) disjoint unions, and

(iii) bounded morphic images,

and \overline{F} is closed under taking

(iv) ultrafilter extentions.
GbTh Theorem for GML

Let F be a first-order definable class of frames. TFAE:

(A) F is GML-definable.

(B) F is closed under taking

(i) generated subframes,
(ii) disjoint unions,
(iii) g-bounded morphic images, and
(iv) graded ultrafilter images.
Propositional language extended with \(\{ \Diamond_k \mid k \in \mathbb{N} \} \).

Given any Kripke model \((W, R, V) \),

\[
w \in \llbracket \Diamond_k \varphi \rrbracket \iff \#(R(w) \cap \llbracket \varphi \rrbracket) \geq k,
\]

where \(R(w) = \{ v \in W \mid wRv \} \).

\(\Diamond \varphi \equiv \Diamond_1 \varphi \).

\(\Diamond_k p \rightarrow \Diamond_k (p \lor q) \) is valid.

So, \((\Diamond_k p \lor \Diamond_k q) \rightarrow \Diamond_k (p \lor q) \) is valid.

\(\Diamond_2 \top \) defines the existence of at least two successors for each state, which is undefinable in BML.
Non-Normal Character of $\diamond_k (k > 1)$
Non-Normal Character of $\diamond_k (k > 1)$
Non-Normal Character of \Diamond_k ($k > 1$)
Non-Normal Character of $\Diamond_k (k > 1)$
Non-Normal Character of \diamond_k ($k > 1$)
Non-Normal Character of $\diamond_k \ (k > 1)$

- $\diamond_k (p \lor q) \rightarrow (\diamond_k p \lor \diamond_k q)$ is invalid ($k > 1$).
- $\diamond_k (p \lor q)$ is not equivalent to $\diamond_k p \lor \diamond_k q \ (k > 1)$.
Derived Neighborhood Structure from Kripke Frame

\[w \in \left[\lozenge_{k} \varphi \right] \iff \#(R(w) \cap \left[\varphi \right]) \geq k \]
\[\iff \exists X \subseteq R(w). (\#X = k \text{ and } X \subseteq \left[\varphi \right]) \]
\[\iff \left[\varphi \right] \in \tau_{k}(w), \]

where \(\tau_{k}(w) \) is defined as:

\[Y \in \tau_{k}(w) \iff \exists X \subseteq R(w). (\#X = k \text{ and } X \subseteq Y). \]

Clearly, \(\tau_{k}(w) \) is monotone. For neighborhood structures, we have an appropriate notion of morphism.
g-Bounded Morphism

- Consider (W, R) and (W', R').
- $f : W \to W'$ is a *g*-bounded morphism if:

 $$f^{-1}[Y] \in \tau_k(w) \iff Y \in \tau'_k(f(w)) \quad (k \in \mathbb{N}),$$

 for any $w \in W$ and any $Y \subseteq W'$.
- \mathcal{F}' is a *g*-bounded morphic image of \mathcal{F} if there is a surjective *g*-bounded morphism from \mathcal{F} to \mathcal{F}'.

If \mathcal{F}' is a *g*-bounded morphic image of \mathcal{F}, then $\mathcal{F} \Vdash \varphi$ implies $\mathcal{F}' \Vdash \varphi$ for any φ of GML.
If \(f \) is a \(g \)-bounded morphism from \(\mathcal{F} \) to \(\mathcal{F}' \) \iff \(f \) is a bounded morphism and \(f \upharpoonright R(w) \) is injective (\(w \in W \)).
Undefinability of Irreflexivity in GML

If f is a g-bounded morphism from \mathcal{F} to \mathcal{F}' \iff f is a bounded morphism and $f \upharpoonright R(w)$ is injective ($w \in W$).
Graded Jankov-Fine Formula

- Let \mathcal{F} be a finite transitive point-generated frame with the root w.
- Put $W = \{w_0, \ldots, w_n\}$ and $w_0 := w$.
- Associate each w_i with a new propositional letter p_i and define $p_X := \bigvee\{p_i \mid w_i \in X\}$ for $X \subseteq W$.
- The graded Jankov-Fine formula $\varphi_{\mathcal{F},w}$ is the conjunction of all the following:
 - p_0
 - $\square(p_0 \lor \cdots \lor p_n)$
 - $\land\{\square^+(p_i \rightarrow \neg p_j) \mid i \neq j\}$
 - $\land\{\square^+(p_i \rightarrow \Diamond_k p_X) \mid X \in \tau_k(w_i)\}$
 - $\land\{\square^+(p_i \rightarrow \neg \Diamond_k p_X) \mid X \notin \tau_k(w_i)\}$

where $\square^+ \psi = \psi \land \square \psi$.
Relative GbTh Theorem for GML

(Lemma) Let \(G \) be a finite transitive point-generated frame with the root \(w \). Then, for any transitive \(G = (G, S) \), TFAE:

(A) \(G \not\models \neg \varphi_{G, w} \)

(B) \(\exists v \in G. G \) is a \(g \)-bounded morphic images of \(G_v \).

Let \(C \) be the class of all finite transitive frames and \(F \subseteq C \). TFAE:

(A) \(F \) is GML-definable within \(C \)

(B) \(F \) is closed under taking:

- generated subframes,
- (finite) disjoint unions,
- \(g \)-bounded morphic images.
Guiding Idea for Alternative of Ultrafilter Extension

In BML:

\[\mathcal{F} \equiv \text{ue} \mathcal{F} \]

\[\sqcap \leftrightarrow \sqcup \]

\[\mathcal{F} \cong \mathcal{F} \]
Our Guiding Idea (cf. (S. & Sato 2007))

Completeness proof of extended modal logic gives us an idea of alternative of ultrafilter extensions.
Kit Fine’s completeness proof of GML (1972) gives us:

\[\mathcal{F} \xleftarrow{\text{GRADED ULTRAFILTER IMAGES}} (\text{Uf}(W), (R_{k}^{ue})_{k \in \mathbb{N}}) \xleftarrow{\text{GbTh Theorem for GML}} \mathcal{G} \]

What are Graph Frame and Fine Mapping?

\[\mathcal{F} \xleftarrow{\text{GRADED ULTRAFILTER IMAGES}} (\text{Uf}(W), (R_{k}^{ue})_{k \in \mathbb{N}}) \xleftarrow{\text{GbTh Theorem for GML}} \mathcal{G} \]
Graph Semantics for GML

$(W, (R_k)_{k \in \mathbb{N}})$ is a graph frame if $W \neq \emptyset$ and $R_k \subseteq W^2$ such that: $k < l$ implies $R_l \subseteq R_k$.
(\(W, (R_k)_{k \in \mathbb{N}}\)) is a graph frame if \(W \neq \emptyset\) and \(R_k \subseteq W^2\) such that: \(k < l\) implies \(R_l \subseteq R_k\).
Graph Semantics for GML

$(W, (R_k)_{k \in \mathbb{N}})$ is a graph frame if $W \neq \emptyset$ and $R_k \subseteq W^2$ such that: $k < l$ implies $R_l \subseteq R_k$.
Graph Semantics for GML

$(W, (R_k)_{k \in \mathbb{N}})$ is a graph frame if $W \neq \emptyset$ and $R_k \subseteq W^2$ such that: $k < l$ implies $R_l \subseteq R_k$.
Graph Semantics for GML

$(W, (R_k)_{k \in \mathbb{N}})$ is a graph frame if $W \neq \emptyset$ and $R_k \subseteq W^2$ such that: $k < l$ implies $R_l \subseteq R_k$.
Graph Semantics for GML

- $(W, (R_k)_{k \in \mathbb{N}})$ is a graph frame if $W \neq \emptyset$ and $R_k \subseteq W^2$ such that: $k < l$ implies $R_l \subseteq R_k$.

![Diagram of graph frame](image)
Graph Semantics for GML

(W, (R_k)_{k \in \mathbb{N}}) is a graph frame if W \neq \emptyset and R_k \subseteq W^2 such that: k < l implies R_l \subseteq R_k.
Graph Semantics and Coalgebraic Semantics for GML

- Given any graph frame and any valuation \(V \), we define:

\[
\mathcal{G} \models_{V} \Diamond_{k} \varphi \iff \exists X \subseteq \omega \, |\varphi| \cdot \exists l : X \to \mathbb{N}. \left(\forall x \in X. [wR_{l(x)}x] \text{ and } \sum_{x \in X} l(x) \geq k \right),
\]

where \(|\varphi| := \{ w \in \mathcal{W} \mid w \models_{V} \varphi \} \).

- We can construct an equivalent coalgebraic model from a graph model, and vice versa, where the intended functor is the infinite multiset functor \(B_{\infty} = (\mathbb{N} \cup \{ \infty \})^{X} \).
Fine Mapping

1. Let \((W, (R_k)_{k \in \mathbb{N}})\) be a graph frame and \((G, S)\) a Kripke frame.
2. We say that \(f : G \rightarrow W\) is a Fine mapping if:
 \[
 \#(f^{-1}(w) \cap S(x)) \geq k \iff f(x) R_k w \quad (k \in \mathbb{N}),
 \]
 for any \(x \in G\) and any \(w \in W\).

If \(f : G \rightarrow W\) is a surjective Fine mapping,
then \((G, S) \models \varphi\) implies \((W, (R_k)_{k \in \mathbb{N}}) \models \varphi\)
for any \(\varphi\) of GML.
An Example of Fine Mapping: Fine (1972)

- Given any graph frame \((W, (R_k)_{k \in \mathbb{N}})\), define
 - \(G := W \times \mathbb{N}\).
 - \((w, k) R (w', l) \iff wR_l w'\).

- Then, \(\pi_1 : W \times \mathbb{N} \to W\) is a Fine mapping.

- Consider the following graph frame:
 - \(W = \{ \ast \}\)
 - \(R_0 = \{(\ast, \ast)\}\) and \(R_k = \emptyset \) \((k > 1)\).

- The above construction gives us:

- $G := W \times \mathbb{N}$.
- $(w, k)R(w', l) \iff wR_l w'$.

![Diagram showing a directed graph with nodes labeled 0 to 7, illustrating the relation $(w, k)R(w', l) \iff wR_l w'$.]
Graded Ultrafilter Image

Given \((W, R)\), we define:

- \(\text{Uf}(W) := \text{the set of all ultrafilters on } W\).
- \(U_1 \sim_k U_2 \iff \forall X \subseteq W. [X \in U_2 \implies m_k(X) \in U_1]\),
 where \(m_k(X) = \{ w \in W \mid \#(R(w) \cap X) \geq k \}\).
- Then, \((\text{Uf}(W), (R^\text{ue}_k)_{k \in \mathbb{N}})\) is a graph frame.

\[(\text{Uf}(W), (R^\text{ue}_k)_{k \in \mathbb{N}}) \models \varphi \implies (W, R) \models \varphi \text{ for any } \varphi \text{ of GML.}\]

- \(\mathcal{F} = (W, R)\) is a graded ultrafilter image of \(\mathcal{G} = (G, S)\) if there exists a surjective Fine mapping \(f : G \to \text{Uf}(W)\):

\[
\mathcal{F} \ (\text{Uf}(W), (R^\text{ue}_k)_{k \in \mathbb{N}}) \leftarrow \mathcal{G}
\]
Undefinablity of $\forall x.\exists y. (xRy \text{ and } yRy)$
GbTh Theorem for GML

Let F be a first-order definable class of frames. TFAE:

(A) F is GML-definable.

(B) F is closed under taking

(i) generated subframes,
(ii) disjoint unions,
(iii) g-bounded morphic images, and
(iv) graded ultrafilter images.

(∵) Use the model-theoretic proof by Van Benthem (1993).
Further Directions

- GbTh Theorem for Graded **Hybrid** Language?
 - GbTh Theorem for **HL** by Ten Cate (2005).

- The Scope of Our Guiding Idea
 - Is it possible to get GbTh Theorem for conditional logic over preference frames? What else?

- The second author recently established that there is a natural GbTh-Theorem for coalgebraic semantics of GML (by the infinite multiset functor) via duality between algebras and coalgebras (cf. Kurz and Rosický (2007)).
Take-home Message

We revive Fine’s old idea in the new context of GbTh-style characterization.

Thank You